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We discuss the use of recent new formulations of the Tau method for the numerical 
approximation of differential eigenvalue problems where the spectral parameter appears non- 
linearly. Our approach enables us to translate the differential eigenvalue problem into a 
generalized algebraic eigenvalue problem, which is formulated by using a standard technique 
easy to implement in a computer. We consider several examples and report results of high 
accuracy. 0 1987 Academic Press. Inc 

1. INTRODUCTION 

The numerical treatment of differential eigenvalue problems where the spectral 
parameter appears nonlinearly has been discussed, in the context of the Tau 
method, in an early paper of Chaves and Ortiz [I], published in 1968. These 
authors used the recursive formulation of the Tau method (see Ortiz [2]); although 
results of considerable accuracy were reported in that paper, the computer 
implementation of their algorithms was rather involved. In this paper we use a new 
approach [334] to Ortiz’ formulation of the Tau method of Lanczos [S], which 
leads to algorithms of remarkable simplicity, while retaining the accuracy of earlier 
results. 

They are based on the systematic use of two simple matrices, with nonzero 
elements on only one line parallel to the main diagonal, used to translate the 
differential eigenvaiue problem into an algebraic generalized eigenvalue problem 
which is solved with standard software. 

By using a technique suggested by Peters and Wilkinson [6] we show that the 
Tau method can be used efficiently for the numerical treatment of differential eigen- 
value problems where the spectral parameter enters nonlinearly in the equation. We 
apply our technique to three examples, the last of which corresponds to a bihar- 
manic problem define on an infinite strip. 

The accuracy of the results obtained in this paper suggests that the recent for- 
mulations of the Tau method should be taken into account as useful tools for the 
numerical treatment of differential eigenvalue problems. 
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2. APPROXIMATION OF DIFFERENTIAL EIGENVALLJE PROBLEMS 
WITH THE TAU METHOD 

Let us consider the two matrices 

0 
1 0 

?j := 2 0 and p:= 
. . . . . 

. . . . . 

0 1 
0 1 

0 1 
..*.. 

. . . . 

Let a,(x) = gn -_x, where a, E R”+ ‘, be a polynomial with coefficients a,,, i = 0( 1) ~1, 
and let x= (1, x, x2, . ..)‘. W e consider the class D of linear differential operators 
with polynomial coefficients; let DED, then D is given by 

D := 2 pk(x)[dk/dxk] = f 2 pklx’[dk/dxk], 
k-0 k=OI=O 

where w is the order of the differential operator D. 
We recall the following result from Ortiz and Samara [3]: 

THEOREM 1. I’D ED, then 

Da,(x) : = g,Ik, 

where 

I7 := i #p,(p). 
1=0 

The Tau method can be easily constructed taking as a starting point the elemen- 
tary case of linear differential (or difference-differential) equations with coefficients 
which are either polynomials or rational polynomial functions. From this class of 
equations its applicability is extended to cases where the coefficients have a more 
general nature, including the case of discontinuous coefficients (see Liu and Ortiz 
[7]). Nonlinear ordinary differential equations are treated with techniques dis- 
cussed in Ortiz [S], Ortiz and Samara [3], Onumanyi and Ortiz [lo] and Ortiz 
and Pham [ 111; nonlinear partial differential equations have been discussed by 
Ortiz and Samara [9] and Ortiz and Pun [12, 131. 

Let us consider the differential eigenvalue problem defined by 

DA Y(X) = 0, adx<b, 

(fi>Y)=oT j=O(l) w, 
(1) 
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where 

D,:= D,fAD,; D,,D,ED 

and the fJ are point functionals acting on y(x); they stand for the boundary 
conditions to be satisfied by the solution y(x) of (1). 

With (1) we associate the Tau problem 

D, Y,(X) = ff,(xL a<x<b, 

(f,>YJ’O, 
(2) 

j= l(1) w, 

defined by the same differential operator DA; H,(x) is a polynomial of degree pz 
chosen for the exact solution y,(x) of (2) to be a polynomial of a prescribed degree, 
trivially related to n (see Ortiz [2] for further details). 

H,(x) is a linear combination of polynomials v,Jx) ePk with free coefficients, 
called the tau-parameters of problem (2): 

N,(x) := z,,Ju*(x)+ ‘.. +Zn.~.+sO,tl~M’--S(X). 

The w + s tau-parameters are chosen to adjust the approximate solution to the 
given u’ boundary conditions and to satisfy s conditions imposed by the Tau 
method (see Ortiz [2]). The uk(x) are usually chosen to be polynomials with 
prescribed optimal properties on [a, b]. Chebyshev polynomials, which have 
minimum properties in the uniform norm on [a, b] and thus minimize in that norm 
the difference between (1) and its associated Tau problem (2), are a common 
choice. Legendre polynomials, which have the advantage of being orthogonal in 
[a, b], are selected when it is desirable to minimize the error in the solution at the 
end points of [a, b] (see Namasivayam and Ortiz [ 141 for an analytic discussion of 
these and other possible choices for the representation of H,(x)). 

Let _v := (ok(x)) = Vs, k =O, 1, 2, . . . . be a polynomial basis, where V is a low’er 
triangular nonsingular matrix. Let us consider the polynomial y,(x) = a,. 3 : = 
E,, . v. Let 17, : = 17, + U7,, where 17,, i= 1, 2, are the matrices associated by 
Theorem 1 with D, E D, i = 1,2. If D is applied to y,(x), we find that 

Dj,Y,(X)=~,17~!!=S,lj~~, (3) 

where I-i, is the conjugate of n, under the similarity transformation defined by k: 
Let us apply the functionals f, to y,(x), 

(f,,u,)= f +(f,,-u’) := i a,,b,,:= s,,.bj, 
,=O i=O 

for j= l(1) w. Let B be a matrix defined by B :=b], j= l(1) w. We can write gI? 
for (f,, y,(x)), j = l( 1) w. If y,(x) is defined in the basis _v we write g* I/B. Therefore, 
we can write 
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Let [Z], be the restriction of a matrix 2 to its 12 + 1 columns and IZ + 1 rows. 
Ortiz and Samara [4] have shown that the solution of the Tau problem (2), 
associated with (l), is equivalent to the simultaneous solution of an homogeneous 
problem defined by (3)-(4) for the coefficient vector gn of y,(x). Since the solution 
of the Tau problem is a polynomial of degree yt, we can write 

~nCG.1, = 9, (5) 

where GA stands for the combined matrix (VB, fi,), the first w columns of which are 
those of the matrix VB, followed by those of ai,, we can write (5) as a generalized 
eigenvalue problem of the form 

which is the problem to be solved by using standard software. The spectral 
parameter 2 may enter the boundary conditions, in which case the matrix B shall 
depend on A. 

3. NONLINEAR EIGENVALUE PROBLEMS 

Let us consider differential eigenvalue problems of the form 

D&x) := 06X<!& 
(6) 

(fjJJ)=O, j= l(1) W, 

where Di E D, for i = 0( 1) r, r > 2. In them the spectral parameter enters nonlinearly 
in the differential equation. 

As before, we reduce this problem to an algebraic eigenvalue problem, which 
now is of the form 

g,CG,l, =g (7) 

with 

Transposing the matrix equation (7) we obtain the nonlinear matrix eigenvalue 
problem 

[ 1 i Airi b = 0, r >, 2, 
i=O 

(8) 
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where 

b = r.$J’ and rl = [Gl]T, i = 0( 1) r. 

Peters and Wilkinson [6] have remarked that the generalized eigenvalue problem 
(8) has the same and only the same eigenvalues as the standard eigenvalue problem 

where 

0 I 
0 0 z 

and 

3 Q:= 

I 
0 I 
. . ~ . . . . . . 
. . ..a........ 

0 *.....a 0 I 
0 ,.,..*.... 0 -r, 

Peters and Wilkinson have also remarked in [6] that when r, is nonsingular, the 
eigenvalues of the previous problems are also those of the standard eigenvalue 
problem 

where 

A := 

and 

0 I 
0 0 z 
.*a . . . . . . 
. . . . . . . . . . . . 
0 . . . . . . . . . 0 I 
0, 8,. . . . . . . . e,- 1 

e,:= +-,1-l ri, for i=O(l) T- 1. 

Let us assume that r, is singular, but that, say, T, is not; then we may reformulate 
problem (8) as 

j$o [A’/Ar] rib = 0, with Y 3 2, 

and obtain a problem for l/A. 
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4. NUMERICAL EXAMPLES OF NONLINEAR EIGENVALIJE PROBLEMS 

We shall consider now three numerical examples where the spectral parameter 
appears nonlinearly in the differential equation. 

EXAMPLE I. Let 

y”(X) + {A + A2x2] y(x) = 0, -l<x,<l, (11) 

with the boundary conditions 

y(-l)=y(l)=O. 

This problem has an infinite number of negative and positive eigenvalues. Collatz 
(see [15, pp. 210 and 425-J) estimated two eigenvalues of it by using a power series 
expansion: a positive one, 1.9517, and a negative one, - 6.5. The same problem was 
considered by Chaves and Ortiz [l] by using the recursive formulation of the Tau 
method of Ortiz [a]; with estimations up to degree eight, they found the first to 5D 
and gave estimates of three other eigenvalues, two of them negative. More recently, 
Scott [16] discussed this problem by using invariant imbedding techniques which 
convert it into an initial value problem. His estimates were obtained by using the 
Runge-Kutta-Fehlberg scheme with a tolerance of lo-‘, coupled with a root solver 
to find the eigenvalues. He gives approximations of the first three positive eigen- 
values. Table I displays the values obtained with the formulation of the Tau method 
discussed in this paper for iz = 10, 15 for the first two positive and the first two 
negative eigenvalues. The computation is repeated again for n =20 to test the 
accuracy of our results. It shows that for n = 10 the first seven digits are accurate for 
the first positive eigenvalue, live for the second one and four for the other two. For 
n = 15 the first ten digits of the first positive eigenvalue are accurate, nine of the 
second positive and seven of the first and second negative eigenvalues. The third 
positive eigenvalue was also computed with n = 20 to compare it with the result 

TABLE I 

Tau Method Approximation of the Eigenvalues of y”(x) + [A + 1’x*] y(x) = 0, y( - 1) = y( 1) = 0 

Degree of Tau approximation 

Eigenvalues ?I=10 n=lS n=20 

4 1.951 702 1.951 702 365 1.951 702 365 
12 4.286 1 4.286 11106 4.286 111061 
13 7.545 920 36 
a-1 - 6.597 1 - 6.597 162 -6.597 162 005 
A-2 - 7.036 5 - 7.035 688 - 7.035 687 97 
a-3 - 13.200 062 
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reported by Scott. We find that he correctly claimed his results to be accurate up to 
eight digits; we have also computed the third negative eigenvalue for n = 20. 

EXAMPLE II. Let 

y”“(X) + A[y”(X) -y(x)] + h2y(x) = 0, O<x<l, 112) 

with the boundary conditions 

Y(O) = 0; y’(0) + y”‘(0) = 0; y(l)=O; 

y’(l)+y”‘(l)=O. 

In Table II we report numerical results obtained with the Tau method formulation 
of this paper for y1= 10 and n = 15. 

EXAMPLE III. In a recent paper Spence [17] considered a boundary value 
problem for the biharmonic equation 

V4u(x, y) = 0, (13) 

defined on a semi-infinite strip S : = {x 3 0, - 1 < y d I>. 

The boundary conditions on the free edges y = f 1 are homogeneous. Data on the 
segment x = 0 are of a type that arises both in elasticity theory and in Stokes’ flow 
of a viscous fluid. 

The solution u(x, y) is assumed to be given by an expansion 

4x, Y) = C ckhk(y, A,) exp( -Akxt-) 
k 

in terms of eigenfunctions h,(y, A,), where I, are the eigenvalues and ck coefficients 
fixed by the data on the edge x = 0 of S. The eigenvalues A+ are assumed to be such 
that Re(A,) > 0, to be compatible with the boundary conditions. 

TABLE II 

Tau Method Approximation of the Eigenvalues of y”“(x) + i.[y”(x) -y(x)] + l”y(x) = 0, 0 <x < 1, with 
the Boundary Conditions y(O) = 0; y’(0) + y”‘(O) = 0; y( 1 j = 0; y’( 1) + y”‘( 1) = 0 

Degree of Tau approximation 

Eigenvalues n= 10 n= 15 

4 1.000 000 1.000 000 
a2 12.693 84 12.693 835 
4 14.324 5 14.324 628 
4 50.51 50.532 
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We remark that the eigenvalues of problem (13) are implicitly defined by the 
differential eigenvalue problem 

h”(y) + 2Ph”(y) + A4h(y) = 0, -1QyGL (14) 

with the boundary conditions 

and the supplementary requirement that Re(&) > 0. These eigenvalues are the zeros 
with positive real parts of the transcendental equation 

2/2 * sin(2i) = 0, 

where the even (odd) eigenfunctions correspond to the + ( - ) sign, respectively. 
These eigenfunctions can be separated by solving individually the two differential 
eigenvalue problems 

h”“(y) + 2/?%“(y) + A4h(y) = 0, -l<.JJ<l, 

with the boundary conditions 

h’(O) = h”‘(0) = h(1) = h’(1) = 0, 

for the even eigenmodes; or 

h(O)=h”(O)=h(l)=h’(l)=O, U5b) 

for the odd eigenmodes. 
We have solved the differential eigenvalue problems (15a)-(15b) with the for- 

mulation of the Tau method of this paper, taking II = 20. In Table III we report our 
direct results, which ignore the known form of the solution, and also those given by 

TABLE III 

Tau Method Approximation of the Eigenvalues of a Biharmonic Problem Defined on an Infinite Strip, 
Equivalent to the Problem h”“(y) +21%“(y) + A4h(y) = 0, - 1~ y < 1, h’(O) = h”‘(O) = h( 1) = h’( 1) =0, 

and h(O)=h”(O)=h(l)=h’(l)=O 

Exact eigenvalues 

Spence[17] Hillman and Salzer [ 183 
Tau method 

approximate eigenvalues 

2.106 196 + i 1.125 364 2.106 197 + i 1.125 364 
3.748 838 + i 1.384 339 3.748 839 + i 1.384 339 

5.356 269 + i 1.551 574 5.356 269 + i 1.551 574 
6.949 980 + i 1.676 105 6.949 980 + i 1.676 105 

8.536 682 + i 1.775 544 8.536 685 + i 1.775 524 
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Spence in [17]. The odd eigenvalues were not reported in Spence’s analysis; 
however, they were accurately computed by Hillman and Salzer [18] in 1943 on 
the basis of an approximation given by G. H. Hardy. For the first four ei~enva~ues 
our results agree to at least six digits with the exact ones; for the fifth one our 
agreement is of at least five digits. 

5. STEPS IN THE SOLUTION OF A CONCRETE EXAMPLE 

We shall give in this section a complete description of the steps required to co 
pute one of the examples considered in this paper. Software for the Tau method 
applied to the numerical solution of differential eigenvalue problems where the 
parameter enters nonlinearly follows essentially the same steps. 

Let us consider Example I, problem (1 1 ), where the differential equation is 

f(x) + {n+Fx*} y(x) = 0, -l<x< +1. l16) 

The matrix 17, associated with it is 

17, : = $ + AI + /v/l*, 

where 

p*= 

and I in the unit matrix. 

0 
lo 0 
2 0 0 

6 0 0 
12 0 0 

20 0 a 
. . ~ . . 

0 0 1 
0 0 1 

0 0 1 
0 0 1 

. . . . 

(1’7) 

The conjugate of IZ, under the similarity transformation defined by I/ is given by 

l?A := V17,v-‘=A,+1i?‘,+1*ft,, 

581/72/Z-3 
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where 
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v := 

1 
0 1 

-1 0 2 
o-3 0 4 
1 O-8 08 
0 5 0 -20 0 16 
. . . . . . . . . . ..*...*...*...... 

is the Chebyshev matrix for - 1 d x 6 + 1; 

0 
0 0 
4 0 0 

Z&:= Vq2V-'= 0 24 0 0 
32 0 48 0 
0 120 0 80 

. . . . . . . . . . . . . . . . . . . 

fi, := vzv-‘=I; 

and 

ri, := vp21/--1= 

$O&OOO 
o;o+oo 
fo;o$o 

to ;o a 
$040 

I 
$0 f 
. . . . . * . . 

The two boundary conditions 

. * . . 

0 
0 c 
. . . . . * . . 

JJ(-l)=y(l)=O 

are represented by the two column vectors 

(1, -1, 1, -l,... )’ and (1, 1, 1, L...K 

respectively. Let us consider a concrete case, say n = 5, 

CGnls := CG~I~+~CGII,+~~CG,I,, 

I 

(18) 

(19) 

(20) 
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where 

1 1 32 0 48 0 
-1 1 0 120 0 80 

CG,I, := 

Solving the algebraic eigenvalue problem defined by (20) (see (7)) we find the first 
two Tau method approximate eigenvalues 

A1 + 1.92 and A2 + 4.19. 

001000 
000100 
000010 
000001 
000000 

‘0 0 0 0 0 0 

0 0 $0 ; 01 
ooojog 

CGJs := 
oo$o+o 
ooo+o~’ 
oooogo 
00000~ 

6. FINAL REMARKS 

The results presented in this paper seem to indicate that the new formulations of 
the Tau method considered here deserve to be taken into account for the numerical 
treatment of differential eigenvalue problems where the spectral parameter enters 
nonlinearly. 
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